#

knn

https://static.github-zh.com/github_avatars/Jack-Cherish?size=40

#计算机科学#⚡机器学习实战(Python3):kNN、决策树、贝叶斯、逻辑回归、SVM、线性回归、树回归

Python 9.91 k
1 年前
https://static.github-zh.com/github_avatars/gorse-io?size=40

#计算机科学#Gorse是一个用Go语言编写的开源推荐系统。Gorse的目标是成为一个通用的开源推荐系统,可以很容易地被引入到各种各样的在线服务中。通过将物品、用户和交互数据导入到Gorse中,系统将自动训练模型,为每个用户生成推荐。

Go 9.12 k
17 小时前
https://static.github-zh.com/github_avatars/rom1504?size=40

#计算机科学#Easily compute clip embeddings and build a clip retrieval system with them

Jupyter Notebook 2.64 k
1 个月前
https://static.github-zh.com/github_avatars/datastax?size=40
Java 1.63 k
9 天前
https://static.github-zh.com/github_avatars/lxztju?size=40

利用pytorch实现图像分类的一个完整的代码,训练,预测,TTA,模型融合,模型部署,cnn提取特征,svm或者随机森林等进行分类,模型蒸馏,一个完整的代码

Jupyter Notebook 1.44 k
3 年前
https://static.github-zh.com/github_avatars/MaurizioFD?size=40
Python 985
2 年前
https://static.github-zh.com/github_avatars/TeFuirnever?size=40

⚡️⚡️⚡️《机器学习实战》代码(基于Python3)🚀

Python 964
6 年前
https://static.github-zh.com/github_avatars/kakao?size=40

#计算机科学#TOROS N2 - lightweight approximate Nearest Neighbor library which runs fast even with large datasets

Jupyter Notebook 578
2 年前
https://static.github-zh.com/github_avatars/zhengyima?size=40

#计算机科学#Pytorch、Scikit-learn实现多种分类方法,包括逻辑回归(Logistic Regression)、多层感知机(MLP)、支持向量机(SVM)、K近邻(KNN)、CNN、RNN,极简代码适合新手小白入门,附英文实验报告(ACM模板)

Python 427
5 年前
https://static.github-zh.com/github_avatars/jayshah19949596?size=40

Decision Trees, Random Forest, Dynamic Time Warping, Naive Bayes, KNN, Linear Regression, Logistic Regression, Mixture Of Gaussian, Neural Network, PCA, SVD, Gaussian Naive Bayes, Fitting Data to Gaus...

MATLAB 363
8 年前
https://static.github-zh.com/github_avatars/MaurizioFD?size=40

#算法刷题#⚠️ [ARCHIVED] This version has been archived as of october 2024 and will not be updated anymore, please refer to the README for a link to the new version. This is the official repository for the Recom...

Jupyter Notebook 361
1 年前
https://static.github-zh.com/github_avatars/gabrielilharco?size=40
Jupyter Notebook 286
3 年前
loading...
Website
Wikipedia