#计算机科学#Meta Learning / Learning to Learn / One Shot Learning / Few Shot Learning
PyTorch code for CVPR 2018 paper: Learning to Compare: Relation Network for Few-Shot Learning (Few-Shot Learning part)
Playing Flappy Bird Using Deep Reinforcement Learning (Based on Deep Q Learning DQN using Tensorflow)
Reimplementation of DDPG(Continuous Control with Deep Reinforcement Learning) based on OpenAI Gym + Tensorflow
#计算机科学#59 篇深度学习论文的实现,并带有详细注释。包括 transformers (original, xl, switch, feedback, vit, ...), optimizers (adam, adabelief, ...), gans(cyclegan, stylegan2, ...), 🎮 强化学习 (ppo, dqn), capsnet, distillation, ... 🧠
#计算机科学#深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,50余万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系scutjy2015@163.com 版权所有,违权必究 Tan 2018.0...
#计算机科学#Keras是一个基于 Python 的深度学习库,能够在TensorFlow、Microsoft Cognitive Toolkit、Theano或PlaidML之上运行。
机器学习相关的框架、库、软件精选
#计算机科学#Python for《Deep Learning》,该书为《深度学习》(花书) 数学推导、原理剖析与源码级别代码实现
#Awesome#A curated list of awesome Deep Learning tutorials, projects and communities.
#计算机科学#深度学习入门教程, 优秀文章, Deep Learning Tutorial
#计算机科学#Azure 机器学习Python SDK notebooks 示例
机器学习算法python实现
#自然语言处理#A collection of machine learning examples and tutorials.
#计算机科学#Deep Learning Specialization by Andrew Ng on Coursera.
Basic Machine Learning and Deep Learning
#新手入门#Course to get into Large Language Models (LLMs) with roadmaps and Colab notebooks.
#Awesome#machine learning and deep learning tutorials, articles and other resources
0 条讨论