Loading

该仓库已收录但尚未编辑。项目介绍及使用教程请前往 GitHub 阅读 README


0 条讨论

登录后发表评论

关于

PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

创建时间
是否国产

  修改时间

2022-07-01T08:14:43Z


语言

  • Python98.9%
  • Shell1.1%

yjlee22 的其他开源项目

PyTorch implementation of Fast-Convergent Federated Learning via Cyclic Aggregation, including FedAvg, FedProx, MOON, and FedRS

Python7
3 年前

您可能感兴趣的

PyTorch implementation of Federated Learning algorithms FedSGD, FedAvg, FedAvgM, FedIR, FedVC, FedProx and standard SGD, applied to visual classification. Client distributions are synthesized with arb...

Python77
4 年前

Minimum Energy Resource Allocation Strategy with partial offloading

Python6
4 年前

A Deep Learning Based Decoder for Concatenated Coding over Deletion Channels (IEEE International Conference on Communications, June 2024)

Python2
2 年前

This is a implemention of FedAvg in paper Communication-Efficient Learning of Deep Networks from Decentralized Data.

Python32
4 年前

Optimization of Offloading Scheme Algorithm for Large Number of Tasks in Mobile-Edge Computing

Python202
5 年前

Here we will be implementing federated learning with some privacy preserving algorithms like Secure aggregation,DP,Fedavg,fedprox,and SMPC

1
3 年前

PyTorch implementation of FedNova (NeurIPS 2020), and a class of federated learning algorithms, including FedAvg, FedProx.

Python217
5 年前

Code for Intelligent Dynamic Data Offloading in a Competitive Mobile Edge Computing Market paper https://www.mdpi.com/1999-5903/11/5/118/pdf

Python134
2 年前